1-population

1 - population

Population characteristics of the Human Phenotype Project study participants including birth month and year, sex and visits information.

The information is stored in 2 parquet files:

  • population.parquet - contains sex, month and year of birth per participant
  • events.parquet - also contains information regarding participant visits and calls
from pheno_utils import PhenoLoader
dl = PhenoLoader('population', age_sex_dataset=None)
dl
DataLoader for population with
10 fields
1 tables: ['events']
dl.dict
field_string description_string parent_dataframe relative_location value_type units sampling_rate item_type array cohorts data_type debut pandas_dtype
tabular_field_name
month_of_birth Month of birth Month of birth NaN events.parquet Integer None NaN Data No 10K Tabular 2019-01-01 int
year_of_birth Year of birth Year of birth NaN events.parquet Integer None NaN Data No 10K Tabular 2019-01-01 int
sex Sex Sex NaN events.parquet Categorical (single) None NaN Data No 10K Tabular 2019-01-01 category
research_stage_type Research stage type The type of the research stage NaN events.parquet Categorical (multiple) None NaN Data No 10K Tabular 2019-01-01 category
visit_center Visit center The name of the assessment center NaN events.parquet Categorical (multiple) None NaN Data No 10K Tabular 2019-01-01 category
research_stage_timestamp Timestamp of research stage The timestamp of the research stage. For examp... NaN events.parquet Date None NaN Data No 10K Tabular 2019-01-01 datetime64[ns, Asia/Jerusalem]
research_stage_date Date of research stage The date of the research stage. For example, i... NaN events.parquet Date None NaN Data No 10K Tabular 2019-01-01 datetime64[ns]
age_at_research_stage Age at research stage The age of the participant during the research... NaN events.parquet Integer None NaN Data No 10K Tabular 2019-01-01 float
study_id Study ID The study identifier NaN events.parquet Categorical (multiple) None NaN Data No 10K Tabular 2019-01-01 category
timezone Timezone Timezone NaN events.parquet Date None NaN Data No 10K Tabular 2019-01-01 string